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Figure 1: Interconnecting numerous point masses with massless springs gives a
simple model of an elastic membrane.

The finite-element method (FEM) developed in the 1950’s as a method to
calculate elastic deformations in solids. The idea was to model a continuum by
an assemblage of “finite elements”: as an example, an elastic membrane (such
as a drum skin) can be modeled by numerous point masses interconnected with
massless springs, as illustrated in figure 1. Fifty years later, the point of view
is more abstract, which allows FEM to be used as a general-purpose method,
applicable to all kinds of partial differential equations. FEM is the dominating
technique for solving solid-mechanics problems such as estimating stresses and
strains in elastic material under prescribed loads. Most CAD (Computer Aided
Design) systems provide finite-element solvers in a highly integrated fashion.
The engineer can typically with a few clicks on the computer screen estimate
the deformations and stresses of, say, a machine part during the design. Finite-
element methods are also commonly applied to other areas, such as calculations
of electromagnetic fields and fluid flows.

To shortly introduce the ideas, this note concentrates on a standard model
problem for elliptic boundary-value problems, the Poisson problem. Only ho-
mogeneous Dirichlet boundary conditions are covered here.

1 FEM for the Poisson Problem in Two Space
Dimensions

We consider the elliptic boundary-value problem

—Au=f in Q,
1
u=20 on 0N, (1)

where 2 is an open, bounded and connected domain in the plane, and 90X is its
boundary. The Laplacian A is the sum of second derivatives
_ 0% N 0%u
T 0x2 0 oy?’

Letting u represent a temperature field, equation (1) models steady heat
conduction in a homogeneous, isotropic material, such as a metal, in which the
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temperature is held at zero on the boundary. The function f can be used to
model heat sources such as electric heaters embedded in the material.

1.1 Vector Calculus and Green’s Formula

The finite-element discretization is not applied directly to the Poisson problem
in the differential form (1). Instead, a reformulation, the variational form, is the
basis for discretization. The variational form combines the differential equation
and the boundary condition in a single expression. The basic tool used to obtain
the variational form is Green’s formula, a generalization to higher dimensions
of the integration-by-parts formula

1 1
v(x)u ()]} :/0 v’u’dw+/0 vu" dx. (2)

To derive Green’s formula, we need some definitions and formulas from vector
calculus. The “vector” in vector calculus can be thought of as an arrow, or a
line segment with a direction. In this section, we will use bold symbols like a
to denote such vectors. The components of a will be denoted (a1, as2). The dot
product between two vectors is defined as

2
a-b= Zazbz
i=1

The differentiation operator V can be thought of as the “vector operator”

This operator may be used in different ways. If it operates on a scalar, differ-
entiable function from R? to R, it produces the gradient vector

ov  Ov
Vo=|=—,— ).
(9561 (9:62
The components of the gradient vector simply yields the derivative of the func-
tion v i the directions of the coordinate axis. Linear combinations
ov n ov
a1 — + ay—
! 8951 2 8:752
can also be formed. If @ = (a1, az) is a vector of unit length (a? + a3 = 1x1), we

obtain the directional derivative, that is, the derivative in the direction of the
“arrow” a,

v ov ov
%—ala—wl+aga—w2—a-Vu (4)

Note that we obtain the derivatives in the coordinate-axes directions by choosing
a = (1,0) and (0, 1), respectively.



If w is a differentiable vector-valued function from R? to R?, one may form
the dot product between the operator V and the function w to define the di-

vergence
ow;
Z o, (5)
The product rule of differentiation says that
0 of
Substituting
Ou
f - 'U, g - 81‘7 (6)

into formula (5) and summing yields that

2

Zax( o) = ZSL;?Z e U

for differentiable functions v and twice differentiable functions u. Expression (7)
may be written in a “vector form”, using the V operator defined in (3) and dot

products,
V- (wVu) = Vv - Vu + vAu. (8)

The divergence theorem (or Gauss’ theorem) says that the integral of a
vector-field divergence over a domain is equal to the integral of the normal
component of the field along the boundaries,

/Zgl;: /8 Zn w; ds, (9)

Qzl

wher n; is the components of the outward-directed unit normal vector on 9.
Loosely speaking: the divergence theorem allows the differentiation operator
0/0x; to be replaced by the normal component n; at the same time as the
integral over the domain 2 is replaced by an integral over the boundary 9.
Again, using the V operator and dot products, expression (9) may be written

in the vector form
/V-'wdQ:/ n-wds, (10)
Q 19

with n = (n1,n2). The divergence theorem holds for functions w and bound-
aries 0f) that are sufficiently smooth.
Integrating formula (8) and using the divergence theorem (10) yields

/V-(vVu)dQ: n-Vuds:/Vv-VudQ—i—/vAudQ. (11)
Q Q
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Recalling definition (4) of the directional derivative, expression (11) may be
rewritten to provide Green’s formula in the standard form

/ va—uds:/Vv-VudQ—l—/vAudQ. (12)
ao On Q Q

From this, we see that Green’s formula is nothing else than a generalization of
the integration-by-parts formula (2) to higher dimensions.

1.2 The Variational Form

A classical solution to the Poisson problem (1) is a smooth function u satisfying
equation (1). The precise requirements for u to be a classical solution is that it
should be twice continuously differentiable, and its first and second derivatives
should be functions that can be continuously extended up to the boundary. This
assures that Green’s formula (12) can be applied on u. Let v be a smooth func-
tion from Q = QU QN to R such that v(z) = 0 for each z € 2. Multiply both
sides of equation (1) with v, integrate over €2, and apply Green’s formula (12)
to obtain

/vfdQ:—/vAudQ
Q

U@d8+/VU-VudQ:/VU‘VudQ,
Q Q

; (13)
le) 8n

where the fact that v vanishes on the boundary has been used in the last equality.
From expression (13) immediately follows

Theorem 1. If u is a classical solution to the Poisson problem (1), then u

satisfies

/QVU~VudQ:/deQ, (14)

Q

for each smooth function v vanishing on the boundary.

Equation (14) is called the variational form of the Poisson equation. Theo-
rem 1 refers to the original problem (1), but the variational form can be used
to define a function u without reference to the differential equation. For this
purpose, we introduce the function space

V:{v|/|Vv|2dQ<+ooandv|39:O}, (15)
Q

ov\? ov\?
2 _ 27 _
|V’U| - <81L'1) + <81L'2) ’

/ |Vo|? dQ) < 400
Q

where

The condition



corresponds in many applications to demanding that the energy should be
bounded, for instance when the Poisson equation is used to model steady heat
conduction. Note that V' is a linear space, that is, if v, w € V, then av+pw € V
for each o, B € R. The space V is a Sobolev space, that is, a function space
that contains integral or pointwise bounds on the derivatives of functions, and
is often denoted H{ () in the literature.

The variational problem, now formulated without reference to the differential
equation (1) is the following.

Find u € V such that

(16)
/VU‘VudQ:/vfdQ Yv e V.
Q Q

Solutions to variational problem (16) are called weak solutions of the partial
differential equation (1). From Theorem 1 follows that classical solutions are
weak solutions. As the label “weak” suggests, there are weak solutions that are
not classical solutions. However, one can show that weak solutions are classical
solutions provided that the function f and the boundary 02 are sufficiently
smooth.

1.3 The Minimization Problem

The variational form above is all that is needed to define a finite-element dis-
cretization. However, a classical solution to the particular problem that we
consider, equation (1), also satisfies a certain minimization problem, that is, the
classical solution minimizes the quadratic form

F(v):%/Q|Vv|2dQ—/vadQ.

Similarly as was done for the variational problem, we can also consider the
problem of minimizing F' within the function space V without reference to
classical solutions, that is, consider the problem:

find v € V such that

17

F(u) < F(v) Yv e V. (17)
In fact, the variational problem (16) and the minimization problem (17) are
equivalent:

Theorem 2. The element u € V minimizes F if and only if it is a solution to
the variational problem (16)

Remark 1. The proof below may appear long, but is essentially no more com-

plicated than showing, by differentiation, that the parabola F(z) = 12 — af

has its minimum at = = f.



Proof. For any u, v € V, and t € R, we have

1
Fu+tv) = 5/ |Vu+th|2dQ—/f(u+tv)dQ
Q Q

2

2
:F(u)+t</ V%VudQ—/vfdQ)+t—/|Vv|2dQ.
Q Q 2 Ja

(i) Assume that ¢ = 1 and that w € V is a solution to the variational prob-
lem (16). Then expression (18) reduces to

=1/ [[Vul® + 2tVu - Vo + £2|Vo|?] dQ—/f(u+v)dQ (18)
Q )

Flu+v)=F(u)+ %/Q |Vo|? dQ > F(u) (19)

>0

for any v € V', which shows that « minimizes F'.

(ii) Now assume that u € V minimizes F'. For any t € R and v € V', we define
the function f(t) = F(u+tv), that is, by perturbing F' away from its min-
imum. Thus, the function f has a minimum for ¢ = 0. Expression (18)
shows that f is a second-order polynomial in ¢. The leading-term coef-
ficient is positive for nonzero v, so the polynomial has a minimum when
the derivative vanishes. Setting f'(0) = 0, we conclude that

Vo -VudQ— | vfdQ =0, (20)
J J

Q
for any v € V, that is, u is a solution to the variational problem (16).

O

Remark 2. Variational forms can be defined for practically all elliptic boundary-
value problems, but a corresponding minimization form does not always exist,
for instance when the differential equation contains first-derivative terms.

Remark 3. In mechanics application the variational form (16) is called the prin-
ciple of virtual work, and the minimization problem (17) is called the principle
of minimum potential energy.

Remark 4. The terminology used here, “variational” for (16) and “minimiza-
tion” for (17), is convenient for our purpose, but is not the only existing. Quite
commonly the minimization problem is called a variational form. In fact, the
notion of variational forms was first attached to minimizations of “functionals”
like F' in the calculus of variations.



1.4 Meshing and Finite-Element Approximation

We introduce a triangulation of the domain €2, that is, Q will be subdivided into
nonoverlapping triangles as illustrated in figures 2 and 4. The triangular corners
are called the modes of the triangulation. The boundary nodes are the nodes
which are located on the boundary, and the internal nodes are the nodes which
are not boundary nodes. A valid triangulation should not contain “hanging
nodes”, that is, no node should be located at another triangles side, as in figure 3.
The “fineness” of the triangulation is characterized by a parameter h > 0, the
largest length of any of the triangular sides, for instance.

Now define V}, as the space of all functions that are continuous on Q, linear
on each triangle, and wvanishing on the boundary 9€). The graph of such a
function is a surface composed of triangular-shaped planes, as illustrated in
figure 5.

This space is constructed so that V;, C V, and we define the finite-element
discretization of the Poisson problem (1) as

Find uy € V3, such that

/ Vup, - Vuy, dQ) = / vp f dQ) Yoy, € Vi (21)
Q Q
Note that the discretization is obtained simply by replacing V with the subspace
Vi, in the variational form (16); this way of discretizing is called a Galerkin
approzximation.

In general, a finite-element discretization of a boundary-value problems is
a Galerkin approximations, based on piecewise polynomials, applied to a varia-
tional form of the boundary-value problem.

1.5 The Algebraic Problem

A function in the above defined space V}, is uniquely defined by its values at
the internal nodes (we already know that the function is zero at the boundary
nodes). To see this, it is enough to note that the planar surface of u; on each
triangle is uniquely defined by the values of uj at the triangular corners. Let IV
be the number of internal nodes. Using the basis functions {ngj(a:)};V:1 C W,
each function uj, € V}, can be written

up(@) =Y u;g;(), (22)
j=1

where u; is the value of uy, at node j, and ¢;(x) is the “tent” function depicted
in figure 6. The function ¢; is zero everywhere, except that it raises as a “tent”
around node j, that is, ¢; € V such that

1 ifk=y,
0 otherwise,

oj(xy) = {



Figure 2: A valid triangulation. In- Figure 3: Not a valid triangulation:
ternal nodes are marked by solid contains hanging nodes.
dots and boundary nodes by circles.

Figure 4: A more complicated triangulated domain (note that the domain may
contain holes!)

Figure 5: The functions in V}, are continuous and linear on each triangle. (The
boundary nodes are not included in this picture.)

8



Figure 6: The basis function ¢;(x) is equal to one at node j and zero at all
other nodes.

where x;, is the coordinate of node k.
Substituting expansion (22) into equation (21) yields that

N
Zuj/Vvh~V¢de:/vhfdQ Yoy, € V.
-1 Q Q

Since equation (1.5) should hold for each v, € V}, it must in particular hold for

vp = ¢;, 1 =1, ..., N, which means that
N
Zuj/v¢i-v¢jd9=/¢ifdﬂ i=1,...,N. (23)
= Q Q
Problem (23) is i system of linear equation in the coefficients u;, j =1, ..., N,
that is,
Au=b, (24)

where the matrix A has components

Ay = [ Vo vo;do,
Q

and

uy Jo ¢1fdQ

: b=|
Un fQ ¢Nf ds2

With a terminology borrowed from solid mechanics, the matrix A is called

the stiffness matriz and the vector b the load vector. This terminology is used
also for cases, like heat conduction, when the PDE we are discretizing has
nothing to do with mechanics!

We conclude that a numerical approximation of the Poisson problem with a
finite-element method involves setting up and solving the linear system (24).
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Figure 7: A structured meshing of the Figure 8: A basis function associated
unit square. with the mesh in figure 7

1.6 An Example

Let the domain  be the unit square, and consider the structured mesh of
figure 7. There are J internal nodes in both directions and the sides of each
triangle are h = 1/(J 4+ 1). There is a total of J> = N internal nodes, assumed
to be numbered in the row-wise direction as indicated in figure 7. The basis
functions ¢; have the shape indicated in figure 8. The support of each basis
function, that is, the nonzero region of the function, is on the 6 neighboring
triangles which surrounds node ¢. Note that this means that most of the stiffness
matrix elements

Ajj = / Vi - Vep; dQ
Q

are zero. For instance, A; ;1o = 0 since there is no overlap in the support for
the functions ¢; and ¢;42; see figure 9. In fact, A;; can be nonzero only when i
and j are associated with nearest-neighboring nodes (figure 10).
To calculate the stiffness-matrix elements, we need to know the gradients of
the basis functions,
09; 3¢i)

Oz’ Oy

The gradient is constant at each triangle since ¢; is composed of planar sur-
faces. Letting the x and y directions be oriented in the horizontal and vertical
directions, respectively, the values of the gradient at the support of the basis
function are indicated in figure 11. Note that the basis function is equal to
one at the filled dot and equal to zero at the open dots, which means that the
gradient can simply be read off as the slope of the “tent” function along the
sides of the triangles. With the aid of the gradients given in figure 11, we can

V@=<

10
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Figure 9: There is no overlap in the Figure 10: The nearest neighbors to
support for basis functions ¢; and node i are the six nodes marked with

Dita. black dots. Thus, A4;; can be nonzero
only when j corresponds to one of the
black dots.

)
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Figure 11: The gradient of basis func-  Figure 12: The overlap in the support
tion ¢; is piecewise constant on each  of basis functions ¢; and ¢;y; are the
triangle. The z- and y-coordinates are  triangles T} and T5.

given as the pair (-,-) at each triangle

of the support of the function.
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compute the diagonal elements in the stiffness matrix,

6
A= [ Voi-voan=Y" [ Voi-voa0
Q i=1 " Tk

1 1 1 1 1 1

1 h?

=Sy =t
To compute A; 11, note that V@; - Véir1 # 0 only in two triangles (figure 12),
thus L1 .

onTy: V¢, = <_E’ E) Vi1 = (E,O)

1 1 1

on T : Vo, = <_E’O> Voiy1 = (E’_E)

and thus

2
Ajig1 = / Voi - Viy1dQ = Z Vi - Vi1 dQd
Q =,

1 1 2 h?
=—3Nl - k= -5 5 = -1

Similar calculations yield that
Ajicr = Ajivg = Ajimg = —1, Ajiysr1 =Aii—g-1=0.

Also note that the matrix A is symmetric: A;; = Aj;. Altogether, we obtain
the block triangular structure (empty space means zeros!)

T -I
-1 T -I
A= N
-1 T -1
-1 T
where T and I are the J-by-J matrices
4 -1 1
-1 4 -1 1
T = ’ T I I = 9
-1 4 -1 1
-1 4 1

Thus, the ith row of the matrix-vector product Au will be

i — Ui — Ui — Uiy g — Ui—g. (25)

12



Node 7 + 1 and 7 — 1 is located to the right and left, respectively, of node 4,
whereas nodes i + J and ¢ — J are above and below node i. Thus, expres-
sion (25) is precisely the classical five-point, finite-difference formula. We reach
the remarkable conclusion that the finite-element discretization of the Laplace
operator using continuous, piecewise-linear functions on the structured mesh of
figure 7 reduces to a standard finite-difference formula for the Laplacian. Note,
however, that this does not hold in general; finite-element discretizations are
not always easy to interpret as a finite-difference method.

1.7 Properties of the Stiffness Matrix

Consider the stiffness matrix A with components
Ay = [ V6 Vo;do,
Q

which was obtained by discretizing the Poisson problem (1). This matrix has
some very particular properties, which will be discussed in this section: it is sym-
metric, positive definite, sparse, and ill conditioned. All these properties, except
the sparsity, reflects the nature of the boundary-value problem (1). Some or
all of these properties may change if the equation or the boundary conditions
are altered. For instance, if an additional term containing first derivatives of
u is added to equation (1), the stiffness matrix will no longer be symmetric.
The sparsity is a consequence of the fact that the chosen piecewise-linear ap-
proximation allows a representation in a compact basis, the “tent” functions of
figure 6.
The symmetry of the matrix is immediate,

Aij:/V@"V(ﬁde:/Vqﬁj-VqﬁidQ:Aji.
Q Q

Moreover, the matrix is sparse, since A;; = 0 whenever ¢ and j are not nearest
neighbors. The number of neighbors to each point does not increase when the
mesh is made finer, as long as the mesh refinements are made in a sensible way,
see the discussion in section 1.8. Thus, the number of nonzero elements on each
row does not increase with the order of the stiffness matrix, that is, the matrix
in a sense becomes sparser and sparser with increasing matrix order.

Recall that a real matrix A is positive definite if v Av > 0 whenever v # 0.

Theorem 3. The stiffness matriz is positive definite.

Proof. Let vy, € Vj. Expanding vy, in the “tent” basis functions yields

N
v =Y vigi(a).
i=1

Settin
& T
v = (v1,v2,...,0N) ,

13



yields that

N N
vIiAv = Z ZU‘/ Vi - Vo dQv;
Q

=1 j=1
N N (26)
= / Z \Y (Uz¢z) ZV (’UngSj) dQ) = / |Vl}h|2 Q) > 0,
Q\i:l ) =1 Q
:%'Uh =Vup

with equality if and only if Vv, = 0, that is, if vy, is constant. However, since vy,
is zero on the boundary (by definition of V), it follows that the constant must
be zero. Thus expression (26) is zero only if v, = 0, that is, when v = 0. O

One important consequence of Theorem 3 is that equation (24) has a unique
solution. This follows from the fact that positive-definite matrices are nonsingu-
lar: For a singular matrix A, there would be nonzero vector v so that Av = 0,
and thus v Av = 0. Thus, singular matrices cannot be positive definite, and
positive-definite matrices must therefore be nonsingular.

The condition number of the stiffness matrix depends strongly on h. In fact,
the growth of the condition number can be estimated to cond(A) = O(h~?)
when h is reduced, provided that the the quotient between the size of the small-
est and largest triangle in the mesh is kept bounded as the mesh is refined. The
stiffness matrix is thus ill conditioned for fine meshes. However, in practical
applications is the condition number typically not large enough to cause prob-
lematic amplification of round-off errors. On the other hand, the ill-conditioning
is certainly an issue when applying iterative methods (section 5.4) for solving the
linear system Au = b. Iterative techniques will typically converge slowly when
applied to linear systems emanating from discretization of elliptic boundary-
value problems (regardless of the method used to discretize the equations!). In
general, particular techniques have to be used to speed up the convergence rate,
so-called “preconditioning”. There is also a strategy known as multigrid that
ezploits the fact that the matrix is ill conditioned to speed up the convergence
rate. Using multigrid, large system of equations can be solved in a very efficient
way.

1.8 Accuracy

We have shown how to define a finite-element approximation of the Poisson
problem (1), and that this yields the linear system (24) having a unique solution.
The question how good the finite-element solution is as an approximation of the
original problem will be discussed in this section.

For finite-difference discretizations, accuracy questions are usually addressed
indirectly through study of the local truncation error of the difference operators.
Stability investigations provides a link between truncation error and error in
the solution. The Lax—Richtmyer equivalence theorem (Theorem 4.2) provides
this link for time dependent problems. Truncation errors are seldom studied

14



for finite-element discretizations since it is is possible to study the error in the
discretization directly. The easiest and most natural way is to work with integral
norms of the difference between the weak solution u of problem (16) and the
finite-element solution wuy of problem (21). The L?(€) norm of a function,

1/2
ol 2@y = (/ v2d9> ,
Q

is the analogue for functions of the vector 2-norm. The perhaps most important
norm for solutions of the Poisson problem is the energy norm

ol = ([ |w|2dﬂ)1/2, (27)

that is, the L?(Q)-norm of the first derivatives; recall that weak solutions were
defined among functions with bounded energy norm (definition (15)). The im-
portance of the energy norm is that the finite-element solution is optimal in the
energy norm. That is, no other function in V}, yields a smaller error in energy
norm:

Theorem 4. Let u be the solution to variational problem (16) and uy the finite-
element solution (21). Then

lu = un|ly < |lu—wvallv Yoy, € Vi, (28)

Proof. By equation (21), the finite-element solution wy, satisfies

/vih - Vup dQ) = /thf dQ Yoy, € V. (29)
From equation (16) follows that the weak solution u satisfies

/vih -VudQ = /thf dQ Yoy, € Vi, (30)
since V, C V. Subtracting equations (29) and (30) yields that

/Q Vo - V{u—up)d2=0 Yo € Vi (31)
Let v, be an arbitrary element of Vj,. Then
lu =l = [ 90— un) 2= [ (V0= un)]- [V - u)]

:/Vu-V(u—uh)dQ—/Vuh-V(u—uh)dQ
Q Q

=0 by (31)

(32)
= / VU'V(u—uh)dQ—/ Vop - V(u—vp) dQ
Q Q

~~

=0 by (31)

= / V(u—wp) V(u—up)dQ <|lu—uvp|v|u—upllv,
Q

15



where the last inequality follows from the Cauchy—Schwarz inequality. Dividing
through with ||u — uy||y yields the conclusion. O

The optimality property (28) does not hold for all elliptic boundary-value
problems. For the finite-element solution to be optimal, it is necessary that the
variational problem yields a symmetric stiffness matrix.

The next step in an analysis of the error is a pure approximation prob-
lem. Typically, one considers the interpolant, that is, a piecewise-linear function
agreeing with u at the node points; note that the interpolant is an element of
Vi. The difference between the interpolant and u can be estimated by a type
of Taylor expansion. From Theorem 4 it follows that the error in the finite-
element solution is smaller or equal to the error in the interpolant. The precise
magnitude of this error depends of course on how fine the mesh is, but it also
depends on the quality of the mesh. Loosely speaking, one should try to avoid
very thin triangles.

Altogether, estimating the interpolation error and utilizing Theorem 4, it
can be shown that the error in the finite-element solution is of second order,
that is,

lan = ull2() = O(h?). (33)

Note that the norm above is not the energy norm; the error is of first order
if measured in the energy norm. For estimate (33) to hold, assumptions have
to be made on the mesh quality and on the smoothness of the solution to the
variational problem (16):

(i) (Mesh quality.) The largest angle in any of the triangles should not ap-
proach 180° as the mesh is refined. In particular, this means that no
triangle successively can become infinitely thin.

(ii) (Smoothness.) The solution needs to be smooth, otherwise the conver-
gence rate will be reduced. Smooth solutions are obtained if f and the
boundary  are smooth. The solution is also smooth if the boundary is
polygonal as long as the domain is convex. (If § is not polygonal to start
with, it is typically approximated with a succession of polygonal domains
Qp, such that Q, — Q as h — 0).

The mesh quality condition above is maintained if the triangles, as the mesh
is refined, are subdivided into four triangles in the way indicated in figure 13.
Refining each triangle in the mesh in this way reduces all triangular sides with
a factor 1/2. The error will thus be reduced with a factor 1/4 (for problems
on convex domains at least). Nonsmooth boundaries may cause nonsmooth
solutions and a reduced convergence rate. In particular, so-called reentrant
corners in the domain, as in figure 14, will cause the convergence rate to be less
than second order.

Higher accuracy can thus be obtained through refinement of the mesh (“h
method”). This should preferably be done adaptively, in the parts of the domain
where it is needed, to prevent the size of the stiffness matrix to become too large.
There are automatic methods for this. Higher accuracy can also be obtained

16



Figure 13: A strategy to maintain Figure 14: Reentrant corners, for in-

mesh quality is to subdivide each tri- stance polygonal boundaries with an

angle into four new triangles by joining angle 8 > 180° will cause a nonsmooth

the edge midpoints. solution and a convergence rate which
is less than second order.

by keeping the mesh fixed and increasing the order of the polynomials on each
triangle (“p method”).For instance, the error in the sense (33) can be improved
to third order if V}, consists of continuous functions that are quadratic on each
element.

1.9 Alternative Elements

Quadrilaterals, that is, a geometric figure obtained by connecting four different
points in the plane by straight lines that do not cross, can be used to partition
the domain instead of triangles, see figure 15. In this case will the approximating
space V}, contain globally continuous functions who vary linearly along the edges
of each quadrilateral. However, the functions will no longer be linear within the
elements. In the special case when the quadrilaterals are rectangles oriented
in the coordinate directions, a function vy, € V;, will be bilinear, that is, of the
form
vp(z,y) = a + bz + cy + dzy

on each element. The nodal values of v, (the values of v, at the four corners of
the rectangle) uniquely determine the four coefficients above.

Quadrilateral and, in particular, rectangular elements yields a regular struc-
ture that may give high solution accuracy and allow efficient solutions of the
associated linear systems. It is, however, harder to generate such meshes auto-
matically on complicated geometries compared to triangular meshes.

For three space dimensions, triangular and quadrilateral meshes generalize
to tetrahedral and hezahedral meshes (figure 16) with advantages and limitations
as for corresponding meshes in two space dimensions.
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Figure 15: A quadrilateral mesh.

Figure 16: Meshes in three space dimensions can be composed of nonoverlapping
tetrahedrals (left) or hexahedrals (right).
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Exercises

5.17 For following boundary-value problems, derive weak formulations, define
a FE approximation using continuous, piecewise-linear functions on a uni-
form grid, and specify the linear system associated with the FE approxi-

mation.
(a)
" =f in (0,1),
u(0) =0,
u'(1) = 0.
(b)
—U” = f in (07 ]-)7
u(0) =g,
u(1) = 0.
(c)
—u'"+au =f in (0,1),
u(0) = u(1) = 0.
@ f (0,1)
—u" +u= in (0,1),
u'(0) =/ (1) = 0. (34)
(e)
—(c(z)u’) = f in (0,1),
u(0) =u(l) =0,

where ¢(z) > 0 on [0, 1].

5.18 Assume that f in equation (34) is a function in the space of approxima-
tions, that is,

I
F@) =" figi(x),
i=1
where the ¢;’s are the standard “hat” functions..

(a) Determine the mass matriz M such that the linear system associated
with the FE approximation of equation (34) can be written

Ku = M,

where £ = (f1, fo,..., f1)T.

(b) When computing the mass matrix, use the trapezoidal rule to evalu-
ate the integrals involved and compare with above.
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5.19 Give a reason why the following boundary-value problem is not well posed

in general:
—U” = f in (07 ]-)7

u'(0) = u'(1) = 0.

What happens if a FE discretization is applied and one tries to solve the
associated linear system?

5.20 Calculate expressions for the element stiffness matrix
Al = / Vi - Vg, d
Ty
and the element load vector
fF=1 feido
Ty
associated with a generic triangle T} spanned by the corner points xg,
x;, and x,,, as in figure 1. The basis functions are the standard “tent”

functions for continuous, piecewise-linear functions on a triangular mesh.
For the element load vector, use the following quadrature rule:

area (Ty) (trapezoidal rule),

_ 9(@k) + g(®0) + g(@m)
/T gdQ) = 3

Xm

X

Xk
Figure 1. A triangle spanned by the points ¢y, x;, and .
5.21 Consider a finite-element approximation of the boundary-value problem

—u' = f in (0,1),
u(0) = u(1) =0,

using continuous, piecewise-quadratic functions on a uniform grid. A
nodal basis consists of values at the grid points z; together with the mid-
points ;12 = (25 + Tiy1)/2.
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(a) Specify and sketch the basis functions.
(b) Specify the sparsity pattern of the stiffness matrix.

5.22 Let Q be a open, bounded, and connected domain in the plane with bound-
ary 0f). Consider the boundary-value problem

—Au=f in Q,
ou
au+ — =ag on 0,
on

where ¢ is a given function defined on 92 and a > 0. Derive a weak
formulation of the problem and define a FE approximation. What happens
when a becomes large? Can a = 0 be allowed?
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